
Chapter 10 

Basic Probabilistic Tools for Finance 

In this chapter, the reader will find a short summary of the basic probability tools 
useful for understanding of the following chapters. A more detailed version 
including proofs can be found in Janssen and Manca (2006). 

 
We will focus our attention on stochastic processes in discrete time and 

continuous time defined by sequences of random variables. 

10.1. The sample space 

In order to model finance problems, the basic concrete notion in probability 
theory is that of the random experiment, that is to say an experiment for which we 
cannot predict in advance the outcome. With each random experiment, we can 
associate the elementary events , which often represent the time evolution of the 
values of an asset on a stock exchange on a time interval 0,T . The set of all these 
events  is called the sample space. Some other subsets of  will represent 
possible events. 
 

Let us consider the following examples. 
 
Example 10.1 A bank is to invest in some shares, so the bank looks at the history of 
the value of different shares. In this case, the sample space is the set of all non-
negative real numbers . 
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To be useful, the set of all possible events must have some properties of stability 
so that we can generate new events such as: 

(i) the complement cA : :cA A ; (10.1) 

(ii) the union A B : :  or  A B A B ; (10.2) 

(iii) the intersection A B : : ,A B A B . (10.3) 

 
More generally, if ( , 1)nA n  represents a sequence of events, we can also 

consider the following events: 

1 1

,n n
n n

A A  (10.4) 

representing respectively the union and the intersection of all the events of the given 
sequence. The first of these two events occurs if and only if at least one of these 
events occurs and the second if and only if all the events of the given sequence 
occur. The set  is called the certain event and the set  the empty event. Two 
events A and B are said to be disjoint or mutually exclusive if and only if  

 A B . (10.5) 

Event A implies event B if and only if 

 A B . (10.6) 

In Example 10.1, the event “the value of the share is between $50 and $80” is 
given by the set [50,80]. 

10.2. Probability space 

Given a sample space , the set of all possible events will be noted by , 
assumed to have the structure of an -field or an -algebra. 
 
Definition 10.2 The family  of subsets of  is called a -field or a -algebra 
if and only if the following conditions are satisfied: 

(i) ,  belong to ; 

(ii)  is stable under a denumerable intersection: 

 
1

, 1 ,n n
n

A n A  (10.7) 
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(iii)  is stable for the complement set operation: 

 ,cA A  (10.8) 

(with cA A ). 
 

Using the well-known de Morgan’s laws of set theory, it is easy to prove that a 
-algebra  is also stable under a denumerable union: 

 
1

, 1 .n n
n

A n A  (10.9) 

Any couple ( , )  where  is an -algebra is called a measurable space. 
 
The next definition concerning the concept of probability measure or simply 

probability is an idealization of the concept of the frequency of an event. 
 
Let us consider a random experiment called E with which the couple ( , )  is 

associated; if set A belongs to  and if we can repeat experiment E n times under 
the same environmental conditions, we can count how many times A occurs. If n(A) 
represents the number of occurrences, the frequency of the event A is defined as  

 
( )

( ) .
n A

f A
n

 (10.10) 

In general, this number tends to become stable for large values of n. 
 

The notion of frequency satisfies the following elementary properties: 

(i) , , ( ) ( ) ( ),A B A B f A B f A f B  (10.11) 

(ii) ( ) 1f , (10.12) 

(iii) , , ( ) ( ) ( ) ( ),A B f A B f A f B f A B  (10.13) 

(iv) ( ) 1 ( ).cA f A f A  (10.14) 

 
In order to have a useful mathematical model for the theoretical idealization of 

the notion of frequency, we now introduce the following definition. 
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Definition 10.3 

a) The triplet ( , , )P  is called a probability space if  is a non-void set of 
elements,  a -algebra of subsets of  and P an application from  to [0,1] 
such that: 

(i) 

11

( , 1), , 1:

( ) ( ),

n n i j

n n
nn

A n A n i j A A

P A P A - additivity of P
 (10.15) 

(ii) ( ) 1.P  (10.16) 

b) The application P satisfying conditions (10.15) and (10.16) is called a 
probability measure or simply probability. 

Remark 10.1 

Relation (10.17) assigns the value 1 for the probability of the entire sample space 
. There may exist events 'A  which are strictly subsets of  such that 

 ' 1P A . (10.17) 

In this case, we say that A is almost sure or that the statement defining A is true 
almost surely (in short a.s.) or holds for almost all .  
 

From axioms (10.15) and (10.16), we can deduce the following properties. 

Property 10.1 

(i) If , ,A B then 

 ( ) ( ) ( ) ( ).P A B P A P B P A B  (10.18) 

(ii) If ,A then 

 ( ) 1 ( ).cP A P A  (10.19) 

(iii) ( ) 0.P  (10.20) 
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(iv) If ( , 1)nB n  is a sequence of disjoint elements of forming a partition of 
, then for all A belonging to , 

 
1

( ) ( )n
n

P A P A B . (10.21) 

(v) Continuity property of P: if ( , 1)nA n  is an increasing (decreasing) 
sequence of elements of , then 

 
1

lim ( )n n
n

n

P A P A ; 
1

lim ( )n n
n

n

P A P A . (10.22) 

(vi) Boole’s inequality asserts that if ( , 1)nA n  is a sequence of events, then 

 
11

( ).n n
nn

P A P A  (10.23)  

Example 10.2 

a) The discrete case 

When the sample space  is finite or denumerable, we can set 

 1,..., ,...j  (10.24) 

and select for  the set of all the subsets of , represented by 2 . 
 

Any probability measure P can be defined with the following sequence: 

 
1

( , 1),  0, 1,  1j j j
j

p j p j p  (10.25) 

so that  

 , 1.j jP w p j  (10.26) 
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On the probability space ( ,2 , )P , the probability assigned for an arbitrary 

event A = 
1
,..., , 1, 1,..., ,  if 

lk k j i jk j l k k i j  is given by 

 
1

( ) .
j

l

k
j

P A p  (10.27) 

b) The continuous case 

Let  be the real set ; it can be proven (Halmos (1974)) that there exists a 
minimal -algebra generated by the set of  intervals: 

 , , , , , , , , , ,a b a b a b a b a b a b . (10.28) 

It is called the Borel -algebra represented by  and the elements of  are 
called Borel sets. 
 

Given a probability measure P on ( , ) , we can define the real function F, 
called the distribution function related to P, as follows. 
 
Definition 10.4 The function F from  to 0,1  defined by: 

 , ( ),P x F x x  (10.29) 

is called the distribution function related to the probability measure P. 
 

From this definition and the basic properties of P, we easily deduce that: 

 
, ( ) ( ),  , ( ) ( ),

, ( ) ( ),  , ( ) ( ).

P a b F b F a P a b F b F a

P a b F b F a P a b F b F a
 (10.30) 

Moreover, from (10.29), any function F from  to 0,1  is a distribution 
function (in short d.f.) if and only if it is a non-decreasing function satisfying the 
following conditions: 

– F is right continuous at every point x0, 

 
0

0lim ( ) ( ),
x x

F x F x  (10.31) 
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– and moreover 

 lim ( ) 1, lim ( ) 0
x x

F x F x . (10.32) 

If function F is derivable on with f as the derivative, we have 

 ( ) ( ) , .
x

F x f y dy x  (10.33) 

Function f is called the density function associated with the d.f. F and in the case 
of the existence of such a Lebesgue integrable function on , F is said to be 
absolutely continuous. 

 
From the definition of the concept of integral, we can give the intuitive 

interpretation of f as follows; given the small positive real number x , we have: 

 , ( )P x x x f x x . (10.34) 

Using the Lebesgue Stieltjes integral, it can be seen that it is possible to define a 
probability measure P on ( , )  starting from a d.f. F on  by the following 
definition of P: 

 ( ) ( ), .
A

P A dF x A  (10.35) 

In the absolutely continuous case, we obtain 

 ( ) ( ) .
A

P A f y dy  (10.36) 

10.3. Random variables  

Let us suppose the probability space ( , , )P  and the measurable space 
( , )E  are given. 
 
Definition 10.5 A random variable (in short r.v.) with values in E is an application 
X from  to E such that 

 1: ( )B X B , (10.37) 
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where X-1(B) is called the inverse image of the set B defined by 

 1 1( ) : ( ) , ( )X B X B X B . (10.38) 

Particular cases 

a) If ( , )E = ( , ) , X is called a real random variable. 

b) If ( , ) ( , )E , where  is the extended real line defined by 

 and  the extended Borel -field of , that is, the minimal 

-field containing all the elements of  and the extended intervals 

 
, , , , , , , ,

, , , , , , , ,  ,

a a a a

a a a a a
 (10.39) 

X is called a real extended value random variable. 

c) If ( 1)nE n  with the product -field ( )n  of , X is called an n-
dimensional real random variable. 

d) If ( )nE (n>1) with the product -field ( )n  of , X is called an 
extended n-dimensional real random variable. 
 

A r.v. X is called discrete or continuous according to the fact that X takes a value 
in a set at most denumerable or non-denumerable. 
 
Remark 10.2 In measure theory, the only difference is that condition (10.17) is no 
longer required and in this case the definition of a r.v. given above gives the notion 
of a measurable function. In particular, a measurable function from ( , )  to 
( , )  is called a Borel function.  
 

Let X be a real r.v. and let us consider, for any real x, the following subset of : 

: ( )X x . 

 
Given that, from relation (10.38), 

 1: ( ) ( , ),X x X x  (10.40) 

it is clear from relation (10.37) that this set belongs to the -algebra . 
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Conversely, it can be proved that the condition 

 : ( )X x , (10.41) 

valid for every x belonging to a dense subset of , is sufficient for X being a real 
r.v. defined on . 
 

The probability measure P on ( , )  induces a probability measure  on 
( , )  defined as 

 : ( ) : ( ) .B B P X B  (10.42) 

We say that  is the induced probability measure on ( , ) , called the 
probability distribution of the r.v. X. 

 
Introducing the distribution function related to , we obtain the next definition. 

 
Definition 10.6 The distribution function of the r.v. X, represented by XF , is the 
function from 0,1  defined by 

 ( ) , : ( ) .XF x x P X x  (10.43) 

In short, we write 

 ( )XF x P X x . (10.44) 

This last definition can be extended to the multi-dimensional case with r.v. X 
being an n-dimensional real vector: 1( ,..., )nX X X , a measurable application 
from ( , , )P  to ( , )n n . 
 
Definition 10.7 The distribution function of the r.v. 1( ,..., )nX X X , represented 
by XF , is the function from n to 0,1  defined by  

 1 1 1( ,..., ) : ( ) ,..., ( )X n n nF x x P X x X x . (10.45) 

In short, we write 

 1 1 1( ,..., ) ( ,..., )X n n nF x x P X x X x . (10.46) 
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Each component Xi (i=1,…,n) is itself a one-dimensional real r.v. whose d.f., 
called the marginal d.f., is given by 

 ( ) ( ,..., , , ,..., )
iX i X iF x F x . (10.47) 

The concept of random variable is stable under many mathematical operations; 
thus, any Borel function of a r.v. X is also an r.v. 

 
Moreover, if X and Y are two r.v., so are 

 inf , ,sup , , , , ,
X

X Y X Y X Y X Y X Y
Y

, (10.48) 

provided, in the last case, that Y does not vanish. 
 
Concerning the convergence properties, we must mention the property that, if 

( , 1)nX n  is a convergent sequence of r.v. – that is, for all , the sequence 
( ( ))nX  converges to ( )X  – then the limit X is also a r.v. on . This 
convergence, which may be called the sure convergence, can be weakened to give 
the concept of an a.s. convergence of the given sequence. 
 
Definition 10.8 The sequence ( ( ))nX converges a.s. to ( )X  if 

 : lim ( ) ( ) 1nP X X . (10.49) 

This last notion means that the possible set where the given sequence does not 
converge is a null set, that is, a set N belonging to  such that  

 ( ) 0P N . (10.50) 

In general, let us note that, given a null set, it is not true that every subset of it 
belongs to  but of course if it belongs to , it is clearly a null set (see relation 
(10.26)). 

 
To avoid unnecessary complications, we will assume from now on that any 

considered probability space is complete, This means that all the subsets of a null set 
also belong to  and thus that their probability is zero. 
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10.4. Expectation and independence  

Let us consider a complete measurable space ( , , )  and a real measurable 
variable X defined on . Using the concept of an integral, it is possible to define 
the expectation of X represented by 

 ( )E X XdP XdP , (10.51) 

provided that this integral exists. The calculation of the integral 

 XdP XdP  (10.52) 

can be done using the induced measure  on ( , ) , defined by relation (10.42) 
and then using the d.f. F of X. 

 
Indeed, we can write 

 ( )
R

E X XdP Xd , (10.53) 

and if FX is the d.f. of X, it can be shown that 

 ( ) ( )X

R

E X xdF x , (10.54) 

this last integral being a Lebesgue Stieltjes integral. 
 
Moreover, if FX is absolutely continuous with fX as the density, we obtain 

 ( ) ( ) .xE X xf x dx  (10.55) 

If g is a Borel function, we also have (see for example Chung (2000), Royden 
(1963), Loeve (1963)) 

 ( ( )) ( ) XE g X g x dF  (10.56) 
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and with a density for X 

 ( ( )) ( ) ( )XE g X g x f x dx . (10.57) 

The most important properties of the expectation are given in the next 
proposition. 
 
Proposition 10.1 

(i) Linearity property of the expectation: if X and Y are two integrable r.v. and a, 
b two real numbers, then the r.v. aX+bY is also integrable and  

 ( ) ( ) ( ).E aX bY aE X bE Y  (10.58) 

(ii) If ( , 1)nA n is a partition of , then 

 
1

( )
n

n A

E X XdP . (10.59) 

(iii) The expectation of a non-negative r.v. is non-negative. 

(iv) If X and Y are integrable r.v., then 

 ( ) ( ).X Y E X E Y  (10.60) 

(v) If X is integrable, then so is X  and 

 ( )E X E X . (10.61) 

(vi) Dominated convergence theorem (Lebesgue): if ( , 1)nX n  is a sequence of 
r.v. converging a.s. to the integrable r.v. X, then all r.v. Xn are integrable and 
moreover 

 lim ( ) (lim ) ( ( ))n nE X E X E X . (10.62) 

(vii) Monotone convergence theorem (Lebesgue): if ( , 1)nX n  is a non-
decreasing sequence of non-negative r.v, then relation (10.62) is still true provided 
that  is a possible value for each member. 
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(viii) If the sequence of integrable r.v. ( , 1)nX n  is such that 

 
1

n
n

E X , (10.63) 

then the random series 
1

n
n

X  converges absolutely a.s. and moreover 

 
1 1

( )  ( ( ))n n
n n

E X E X E X , (10.64) 

where the r.v. is defined as the sum of the convergent series. 
 

Given a r.v. X, moments are special cases of expectation. 
 
Definition 10.8 If a is a real number and r a positive real number, then the 
expectation 

 
r

E X a  (10.65) 

is called the absolute moment of X of order r, centered on a. 
 

The moments are said to be centered moments of order r if a=E(X). In particular, 
for r=2, we obtain the variance of X represented by 2 (var( ))X , 

 
22 E X m . (10.66) 

Remark 10.3 From the linearity of the expectation (see relation (10.58)), it is easy 
to prove that 

 2 2 2( ) ( ( ))E X E X , (10.67) 

and so 

 2 2( )E X , (10.68) 

and more generally, it can be proven that the variance is the smallest moment of 
order 2 regardless of what a is. 
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The last fundamental concept we will now introduce in this section is that of 
stochastic independence or, more simply, independence. 
 
Definition 10.9 The events 1,..., ,( 1)nA A n  are stochastically independent or 
independent if and only if 

 1 2
11

2,..., , 1,..., : : ( )
k k

m m

k k n n
kk

m n n n n n n P A P A .(10.69) 

For n=2, relation (10.69) reduces to 

 1 2 1 2( ) ( ) ( )P A A P A P A . (10.70) 

Let us note that piecewise independence of the events 1,..., ,( 1)nA A n  does not 
necessarily imply the independence of these sets and thus does not imply the 
stochastic independence of these n events. 
 
Definition 10.10 

(i) The n real r.vs. X1,X2,…,Xn defined on the probability space , , P  are 
said to be stochastically independent, or simply independent, if and only if for any 
Borel sets B1,B2,…,Bn, we have 

 
11

: ( ) : ( )
n n

k k k k
kk

P X B P X B . (10.71) 

(ii) For an infinite family of r.vs., independence means that the members of every 
finite subfamily are independent. It is clear that if X1,X2,…,Xn are independent, so 
are the r.vs. 

1
,...,

ki iX X  with  

 1 ,  1,..., , 2,...,k ki i i n k n . 

From relation (10.71), we find that 

 1 1 1 1 1( ,..., ) ( ) ( ), ( ,..., ) n
n n n n nP X x X x P X x P X x x x . (10.72) 

If the functions 
1

, ,...,
nX X XF F F  are the distribution functions of r.v. 

1 1( ,..., ), ,...,n nX X X X X , we can write the preceding relation under the form  

 
11 1 1( ,...., ) ( ) ( ), ( ,..., )

n

n
X n X X n nF x x F x F x x x . (10.73) 
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It can be shown that this last condition is also sufficient for the independence 
of 1 1( ,..., ), ,...,n nX X X X X . If these d.f. have densities 

1
, ,...,

nX X Xf f f , relation 
(10.73) is equivalent to 

 
11 1 1( , , ) ( ) ( ), ( ,..., )

n

n
X n X X n nf x x f x f x x x . (10.74) 

In case of the integrability of n real r.vs. X1,X2,…,Xn, a direct consequence of 
relation (10.72) is that we have a very important property for the expectation of the 
product of n independent r.vs.: 

 
1 1

( )
n n

k k
k k

E X E X . (10.75) 

The notion of independence gives the possibility to prove the result called the 
strong law of large numbers which says that if ( , 1)nX n is a sequence of 
integrable independent and identically distributed r.vs., then 

 . .

1

1
( )

n
a s

k
k

X E X
n

. (10.76) 

The next section will present the most useful distribution functions for stochastic 
modeling. 

10.5. Main distribution probabilities 

Here we shall restrict ourselves to presenting the principal distribution 
probabilities related to real random variables. 

10.5.1. The binomial distribution 

Let us consider a random experiment E such that only two results are possible: a 
“success” (S) with probability p and a “failure” (F) with probability q=1-p. If n 
independent trials are made in exactly the same experimental environment, the total 
number of trials in which the event S occurs may be represented by a r.v. X whose 
distribution ( , 0,..., )ip i n  with  

 ( ), 1,...,ip P X i i n  (10.77) 

is called a binomial distribution with parameters (n,p). 
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From the basic axioms of probability theory previously stated, it is easy to prove 
that 

 , 0,...,i n i
i

n
p p q i n

i
, (10.78) 

a result from which we get 

 ( ) , var( ) .E X np X npq  (10.79) 

The characteristic function and the generating function, when they exist, of X 
respectively defined by 

 
( ) ( ),

( ) ( )

itX
X

tX
X

t E e

g t E e
 (10.80) 

are given by  

 
( ) ( ) ,

( ) ( ) .

it n
X

t n
X

t pe q

g t pe q
 (10.81) 

This distribution is currently used in the financial model of Cox, Ross and 
Rubinstein (1979), developed in Chapter 5. 

10.5.2. The Poisson distribution 

If X is an r.v. with values in  such that the probability distribution is given by 

 ( ) , 0,1,...
!

i

P X i e i
i

 (10.82) 

where  is a strictly positive constant, then X is called a Poisson variable with 
parameter . This is one of the most important distributions for all applications. 
For example, if we consider an insurance company looking at the total number of 
claims in one year, this variable may often be considered as a Poisson variable. 
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Basic parameters of this Poisson distribution are given here: 

 
( 1) ( 1)

( ) ,  var( ) ,

( ) ,  ( ) .
it te e

X X

E X X

t e g t e
 (10.83) 

A remarkable result is that the Poisson distribution is the limit of a binomial 
distribution of parameters (n,p) if n  tends to  and p to 0, so that np  converges 
to . 

 
The Poisson distribution is often used for the occurrence of rare events, for 

example, in credit risk presented in Chapter 19. 

10.5.3. The normal (or Laplace Gauss) distribution 

The real r.v. X has a normal (or Laplace Gauss) distribution of parameters 
2 2( , ), , 0 , if its density function is given by 

 

2

2

( )

21
( ) ,

2

x

Xf x e x . (10.84) 

From now on, we will use the notation 2( , )X N . 
 
The main parameters of this distribution are 

 

2

2 2 2 2

( ) ,  var( ) ,

( ) exp ,  ( ) exp .
2 2X X

E X X

t t
t i t g t t

 (10.85) 

If 20,  1, the distribution of X is called a reduced or standard normal 
distribution. In fact, if X has a normal distribution 2 2( , ), , 0R , then 
from (10.85), the reduced r.v. Y defined by  

 
X

Y   (10.86) 

has a standard normal distribution with mean 0 and variance 1. 
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Let  be the distribution function of the standard normal distribution; it is 
possible to express the distribution function of any normal r.v. X with parameters 

2 2( , ), , 0  as follows: 

 ( ) ( )X

X x x
F x P X x P . (10.87) 

Also, from the numerical point of view, it suffices to know numerical values for 
the standard distribution. 

 
From relation (10.87), we also deduce that 

 
1

( ) 'X

x
f x , (10.88) 

where of course from (10.84) 

 

2

2
1

'( )
2

x

x e . (10.89) 

From the definition of , we have 

 

2

2
1

( ) ,
2

x y

x e dy x  (10.90) 

and so 

 ( ) 1 ( ), 0x x x , (10.91) 

and consequently, for X normally distributed with parameters (0,1), we obtain 

 ( ) ( ) 2 ( ) 1,  0P X x x x x x . (10.92) 
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In particular, let us mention the following numerical results: 

2
0.4972( 50%),

3

0.6826( 68%),

2 0.9544( 95%),

3 0.9974( 99%).

P X m

P X m

P X m

P X m

 (10.93) 

Remark 10.4 Numerical calculation of the d.f.  
 

For applications in finance, for example the Black-Scholes (1973) model for 
option pricing (see Chapter 5), we will need the following numerical approximation 
method for calculating  with seven decimal places instead of the four given by the 
standard statistical tables: 

 

2

52
1 5

1

2 3

4 5

1) 0 :

1
( ) 1 ( ),

2
1

,
1

0.2316419,  0.319381530,

0.356563782,  1.781477937,

1.821255978,  1.330274429,

2) 0 :

( ) 1 ( ).

x

x

x e b c b c

c
px

p b

b b

b b

x

x x

 (10.94) 

The normal distribution is one of the most commonly used distributions, by 
virtue of the central limit theorem which says that if ( , 1)nX n  is a sequence of 
independent identically distributed (in short IID) r.vs. with mean m and variance 

2 ,  then the sequence of r.vs. defined by 

 nS nm

n
 (10.95) 
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with 

 1 , 0n nS X X n  (10.96) 

converges in law to a standard normal distribution. 
 
This means that the sequence of the distribution functions of the variables 

defined by (10.93) converges to . 
 
This theorem was used by the Nobel Prize winner H. Markowitz (1959) to justify 

that the return of a diversified portfolio of assets has a normal distribution. As a 
particular case of the central limit theorem, let us mention de Moivre’s theorem, 
starting with 

 
1,  with prob. ,

0,  with prob. 1 ,n

p
X

p
 (10.97) 

so that, for each n, the r.v. defined by relation (10.94) has a binomial distribution 
with parameters (n,p). 
 

By applying the central limit theorem, we obtain the following result: 

 (0,1),
(1 )

lawn
n

S np
N

np p
 (10.98) 

called de Moivre’s result. 

10.5.4. The log-normal distribution 

Though the normal distribution is the most frequently used, it is nevertheless true 
that it could not be used for example to model the time evolution of a financial asset 
like a share or a bond, as the minimal value of these assets is 0 and so the support of 
their d.f. is half of the real line 0, . One possible solution is to consider the 
truncated normal distribution, defined by setting all the probability mass of the 
normal distribution on the negative half-real line on the positive one; however, then 
all the interesting properties of the normal distribution are lost. 

 
Also, in order to have a better approach to some financial market data, we have 

to introduce the log-normal distribution. The real non-negative r.v. X has a 
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lognormal distribution with parameters ,   which we will write as 
( , )X LN   if the r.v. logX has a normal distribution with parameters 2, . 

Consequently, the density function of X is given by 

 
2

2

log

2

0, 0,

1
, 0.

2

x
X

x

f x
e x

x

 (10.99) 

Indeed, we can write 

 
log log ,P X x P X x  (10.100) 

and so 

 

2

2

log

21 log
,

2

tx

X

x
F x e dt  (10.101) 

and after the change of variable t=logx, we obtain relation (10.99). 
 
Let us note that relation (10.101) is the most useful for the calculation of the d.f. 

of X with the help of the normal d.f.  
 
For the density function, we can also write 

 
1 log

( )X

x
f x

x
. (10.102) 

The basic parameters of this distribution are given by 

2

2 2

2

2

2

2

( ) ,

var( ) 1 ,

.
r

r

E X e

X e e

E X e

 (10.103) 
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Let us mention that the lognormal distribution has no generating function and 
that the characteristic function has no explicit form. When 0.3 , some authors 
recommend a normal approximation with parameters 2( , ) . 

 
The normal distribution is stable under the addition of independent r.vs.; this 

property means that the sum of n independent normal r.vs. is still normal. That is no 
longer the case with the lognormal distribution which is stable under multiplication, 
which means that for two independent lognormal r.vs. X1,X2, we have 

 2 2
1 2 1 2 1 2( , ), 1,2 ,i i iX LN i X X LN . (10.104) 

10.5.5. The negative exponential distribution 

The non-negative r.v. X has a negative exponential distribution (or simply 
exponential distribution) of parameter  if its density function is given by 

 ( ) , 0x
Xf x e x , (10.105) 

where  is a strictly positive real number. 
 
By integration, we obtain the explicit form of the exponential distribution 

function 

 ( ) 1 , 0x
XF x e x . (10.106) 

Of course, FX is zero for negative values of x. 
 
The basic parameters are 

 

2

1 1
( ) , var ,

1 1
( ) , ( ) , .

1 1
X X

E X X

t g t t
t t

i

 (10.107) 

In fact, this distribution is the first to be used in reliability theory. 
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10.5.6. The multidimensional normal distribution 

Let us consider an n-dimensional real r.v. X represented as a column vector of its 
n components 1( ,..., ) 'nX X X . Its d.f. is given by: 

 1 1 1( ,..., ) ( ,..., )X n n nF x x P X x X x . (10.108) 

If the density function of X exists, the relations between the d.f. and the density 
function are: 

 
1

1 1
1

1 1 1

( ,..., ) ( ,..., ),
...

( ,..., ) ... ( ,..., ) ,..., .
n

n
X

X n n
n

xx

X n X n n

F
f x x x x

x x

F x x f d d

 (10.109) 

For the principal parameters we will use the following notation: 

 
2 2

2 2

( ) , 1,..., ,

(( )( )) , , 1,..., ,

(( )) , 1,..., ,

(( )( ))
, , 1,..., .

(( ) ) (( ) )

k k

k k l l kl

k k k

k k l l kl
kl

k lk k k k

E X k n

E X X k l n

E X k n

E X X
k l n

E X E X

 (10.110) 

The parameters kl are called the covariances between the r.v. Xk and Xl, and the 
parameters kl , the correlation coefficients between the r.v. Xk and Xl. 

 
It is well known that the correlation coefficient kl  measures a certain linear 

dependence between the two r.v. Xk and Xl. More precisely, if it is equal to 0, there is 
no such dependence and the two variables are called uncorrelated; for the values +1 
and –1 this dependence is certain. 

 
With matrix notation, the following n n  matrix 

 X ij  (10.111) 

is called the variance-covariance matrix of X. 
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The characteristic function of X is defined as: 

 1 1 1( .. ) '
1( ,..., ) n ni t X t X i X

X nt t E e E e t . (10.112) 

Let ,  be an n-dimensional real vector and an n n  positive definite matrix, 
respectively. The n-dimensional real r.v. X has a non-degenerated n-dimensional 
normal distribution with parameters ,  if its density function is given by: 

 
11

( ) ' ( )
2

2

1
( ) , .

(2 ) det

n
X n

f e
x x

x x  (10.113) 

Then, it can be shown by integration that parameters ,  are indeed 
respectively the mean vector and the variance-covariance matrix of X. 

 
As usual, we will use the notation: ( , )nX N . 
 
The characteristic function of X is given by: 

 
1

' '
2( )

i

X e
t t t

t . (10.114) 

The main fundamental properties of the n-dimensional normal distribution are: 

– every subset of k r.vs. of the set {X1,…,Xn} also has a k-dimensional 
distribution which is also normal; 

– the multi-dimensional normal distribution is stable under linear 
transformations of X; 

– the multi-dimensional normal distribution is stable for addition of r.vs., which 
means that if ( , ), 1,...,k n k kX N k m  and if these m random vectors are 
independent, then  

 1 1 1( , )m n m mX X N . (10.115) 
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Particular case: the two-dimensional normal distribution 

In this case, we have: 

 

2
1 12 12

1 2 2
1 221 2

2
1 1 21 2

1 2

2
1 2 2

( , ) ', , ,

1

,det 1 .
1

 (10.116) 

From the first main fundamental properties of the n-dimensional normal 
distribution given above, we have:  

 2
1( , ), 1,2k k kX N k . (10.117) 

For the special degenerated case of 1, it can be proved that: 

 

2 2 1 1

2 1

2 2 1 1

2 1

1 : ,

1 : ,

X X

X X
 (10.118) 

meaning that in this case, all the probability mass in the plane lies on a straight line 
so the two r.vs. X1,X2 are perfectly dependent with probability 1. 

 
To conclude this section, let us recall the well-known property stating that two 

independent r.vs. are uncorrelated, but the converse is not true except for the normal 
distribution. 

10.6. Conditioning  

Let us begin to briefly recall the concept of conditional probability. Let 
( , , )P  be a probability space and let A, B be elements of , and let us observe 
the number of occurrences of event A whenever B has already been observed in a 
sequence of n trials of our experiment. We shall call this number n A B . 

In terms of the frequency of events defined by relation (10.11), we have: 
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( )

( )

n A B
n A B

n B
, (10.119) 

provided that n(B) is not 0. 
 
Dividing by n the two members of relation (10.119), we obtain: 

 

( )

( )

n A B
n A B n

n Bn
n

. (10.120) 

In terms of frequencies, we obtain: 

 
( )

( )

f A B
f A B

f B
. (10.121) 

From the experimental interpretation of the concept of probability of an event 
seen in section 10.2, we can now define the conditional probability of A given B as: 

 
( )

, ( ) 0
( )

P A B
P A B P B

P B
. (10.122) 

If events A and B are independent, from relation (10.122), we obtain: 

 ( )P A B P A , (10.123) 

meaning that, in the case of independence, the conditional probability of set A does 
not depend on the given set B. 

 
As the independence of sets A and B is equivalent to the independence of sets A 

and Bc, we also have: 

 ( )
c

P A B P A . (10.124) 

The notion of conditional probability is very useful for calculating probabilities 
of a product of dependent events A and B not satisfying relation (4.39). Indeed, from 
relations (10.122) and (10.124), we can write: 
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 ( ) ( ) ( )P A B P A P A B P B P B A . (10.125) 

More generally, for n events A1,…,An, we obtain the “theorem of compound 
probability”: 

 1 2 1 1 2 1
1

( ) ...
n

k n n
k

P A P A P A A P A A A A , (10.126) 

a relation expanding relation (10.125). 

 1
1

( )... ( )
n

k n
k

P A P A P A  (10.127) 

is true in the case of the independence of the n considered events. 
 
If event B is fixed and of strictly positive probability, relation (10.122) provides 

the way of defining a new probability measure on ( , )  denoted PB as follows: 

 
( )

( ) ,
( )B

P A B
P A A

P B
. (10.128) 

PB is in fact a probability measure as it is easy to verify that it satisfies conditions 
(10.16) and (10.17), and so PB is called the conditional probability measure given B. 

 
The integral with respect to this measure is called the conditional expectation EB 

relative to PB. 
 
From relation (10.128) and since PB(B)=1, we thus obtain for any integrable r.v. 

Y: 

 
1

( ) ( ) ( )
( )B B

B

E Y Y dP Y dP
P B

. (10.129) 

We can now extend this definition to arbitrary sub- -algebras instead of the 

simple case of , , ,cB B  using an extension of property (10.129) as a definition 

with the help of the Radon Nikodym theorem (Halmos (1974)). 
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Definition 10.11 If 1  is a sub- -algebra of , the conditional expectation of the 
integrable r.v. Y given 1 , denoted by 

1
( )E Y  or 1E Y , is any r.v. of the 

equivalence class such that: 

(i) 
1
( )E Y  is 1 -measurable, 

(ii) 
1 1( )( ) ( ) , . 

B B

E Y dP Y dP B  (10.130) 

 
In fact, the class of equivalence contains all the r.vs. a.s. equally satisfying 

relation (10.130). 
 
Remark 10.5 Taking B  in relation (10.130), we obtain: 

 )())(
1

YEYEE . (10.131) 

Particular cases 

(i) 1  is generated by r.v. X. 

This case means that 1  is the sub- -algebra of  generated by all the inverse 
images of X, and we will use as notation: 

 
1
( )E Y E Y X , (10.132) 

where this conditional expectation is called the conditional expectation of Y given X. 

(ii) 1  is generated by  n r.vs. 1,..., nX X . 

This case means that 1  is the sub- -algebra of generated by all the inverse 
images of 1,..., nX X  and we will use as notation: 

 
1 1( ) ( ,..., )nE Y E Y X X , (10.133) 

where this conditional expectation is called the conditional expectation of Y given 

1,..., nX X . 
 

In this latter case, it can be shown (Loeve (1977)) that there exists a version 

1( ,..., )nX X  of the conditional expectation so that  is a Borel function from 
n to , and as such it follows that 1( ,..., )nE Y X X  is constant on each set 

belonging to 1  for which 1 1( ) ,..., ( )n nX x X x , for instance. 

 



Basic Probabilistic Tools for Finance     439 

This justifies the abuse of notation 

 1 1 1( ) ,..., ( ) ( ,..., )n n nE Y X x X x x x  (10.134) 

representing the value of this conditional expectation on all the s belonging to the 
set 1 1: ( ) ,..., ( )n nX x X x . 
 

Taking B  in relation (10.130), we obtain: 

 
1 1 1 1

( )

( ) ,..., ( ) ( ( ) ,..., ( ) )
n

n n n n

R

E Y

E Y X x X x dP X x X x   (10.135) 

a result often used in the sequel to evaluate the mean of an r.v. using its conditional 
expectation with respect to some given event. 

(iii) If 1 , , we obtain 1( ) ( )E Y E Y  and if 1 , , ,cB B , 
then 1( ) ( )E Y E Y B  on B and 1( ) ( )

c
E Y E Y B  on Bc. 

(iv) Taking r.v. Y as the indicator of the event A, that is to say: 

 ( )

1, ,
1

0, ,A

A

A
 (10.136) 

the conditional expectation becomes the conditional probability of A given 1  
denoted as follows: 

 1 1( ) (1 ( ) )AP A E  (10.137) 

and then relation (10.130) becomes: 

 1 1( ) ( ),
B

P A dP P A B B . (10.138) 

Letting B  in this final relation, we obtain: 

 1 ( ),E P A P A  (10.139) 

a property extending the theorem of total probability . 
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If, moreover, A is independent of 1 , that is to say, if for all B belonging to 1 : 

 ( ) ( ) ( )P A B P A P B , (10.140) 

then we see from relation (10.137) that: 

 1 ( ) ( ),P A P A . (10.141) 

Similarly, if r.v. Y is independent of 1 , that is to say if for each event B 
belonging to 1  and each set A belonging to the -algebra generated by the inverse 
images of Y, denoted by (Y), relation (10.140) is true, then from relation (10.130), 
we have: 

 1 ( )E Y E Y . (10.142) 

Indeed, from relation (10.140), we can write that: 

 

1 1( )( ) ( ) , ,

                         1 ,

                          ( ) ( ),

                         ( ) ,

B B

B

B

E Y dP Y dP B

E Y

E Y P B

E Y dP

 (10.143) 

and so, relation (10.142) is proved. 
 
In particular, if 1  is generated by the r.vs. X1,…,Xn, then the independence 

between Y and 1  implies that: 

 1 ,..., ( )nE Y X X E Y . (10.144) 

Relations (10.142) and (10.144) allow us to have a better understanding of the 
intuitive meaning of conditioning and its importance in finance. 

 
Under independence assumptions, conditioning has absolutely no impact, for 

example, on the expectation or the probability; on the contrary, dependence implies 
that the results with or without conditioning will be different, meaning that we can 
interpret conditioning as given additional information useful to obtain more precise 
results in the case of dependence of an asset. 
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The properties of expectation, stated in section 10.4, are also properties of 
conditional expectation, true a.s., but there are supplementary properties which are 
very important in stochastic modeling. They are given in the next proposition. 
 
Proposition 10.2 (Supplementary properties of conditional expectation) On the 
probability space ( , , )P , we have the following properties: 

(i) If r.v. X is 1 -measurable, then  

 1( ) , . .E X X a s . (10.145) 

(ii) If X is a r.v. and Y 1 -measurable, then  

 1 1( ) ( ), . .E XY YE X a s . (10.146) 

This property means that 1 -measurable r.vs. are like constants for the classical 
expectation. 

(iii) Since from relation (10.145) we have ( ) ,E Y Y  taking
1
( )Y E Y , we 

see that: 

 
1 1

( ( )) ( )E E Y E Y  (10.147) 

and of course since: 

 
1 1
( ( )) ( ),E E Y E Y  (10.148) 

combining these last two relations, we obtain: 

 
1 1 1

( ( )) (( )) ( )E E Y E E Y E Y . (10.149) 

This last result may be generalized as follows. 

Proposition 10.3 (Smoothing property of conditional expectation) Let 1 2,   be 
two sub- -algebras of  such that 1 2 ;  then it is true that: 

 
2 1 1 2 1
( ( )) ( ( )) ( )E E Y E E Y E Y , (10.150) 

a property called the smoothing property in Loeve (1977). 
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A particular case of relation (10.150) is for example: 

 1 1 1 1 1,..., ,...,n nE E Y X X X E E Y X X X E Y X . (10.151) 

This type of property is very useful for calculating probabilities using 
conditioning and will often be used in the following chapters. 

 
Here is an example illustrating sums of a random number of r.vs. with the Wald 

identities. 
 
Example 10.3 (Wald’s identities) Let ( , 1)nX n  be a sequence of IID real r.v.s 
and N a non-negative r.v. with integer values independent of the given sequence. 
The r.v. defined by: 

 
1

N

N n
n

S X  (10.152) 

is called a sum of a random number of random variables and the problem to be 
solved is the calculation of the mean and the variance of this sum assuming that the 
r.vs. Xn have a variance. 

 
From relation (10.150), we have: 

 ( )N NE S E E S N  (10.153) 

and as, from the independence assumptions: 

 ( )NE S N NE X , (10.154) 

we also have: 

 ( ) ( ) ( ),NE S E N E X  (10.155) 

called the first Wald’s identity. 
 

For the variance of SN, it is possible to show that (see for example Janssen and 
Manca (2007)) 

 2var( ) ( ) var( ) var( )( ( ))NS E N X N E X  (10.156) 
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called the second Wald’s identity. 

In the particular case of an n-dimensional real r.v. X=(X1,…,Xn), we can now 
introduce the very useful definition of the conditional distribution function of X 
given 1  defined as follows: 

 
1 1 1 1 1

1 1

( ,..., , ) ,...,

                       ': ( ') ,..., ( ') , .

n n n

n n

F x x P X x X x

Q X x X x
 (10.157) 

Another useful definition concerns an extension of the concept of the 
independence of random variables for the definition of conditional independence of 
the n variables 1, , .nX X  For all (x1,…,xn) belonging to n , we have the 
following identity: 

 
1 1

1

( ,..., , ) ( , ),
n

n k
k

F x x F x  (10.158) 

where of course we have: 

 1( , )k k kF x P X x  (10.159) 

according to definition (10.157) with n=1. 
 
Example 10.4 On the probability space ( , , )P , let (X,Y) be a two-dimensional 
real r.v. whose d.f. is given by 

 ( , ) ( , ).F x y P X x Y y  (10.160) 

As 2  is a complete separable metric space, there exist regular conditional 
probabilities given the sub- -algebras ( )X  or ( )Y , and so the related 
conditional d.f. denoted by:  

 : ,  :X Y Y XF x Y y F y X x  (10.161) 

also exists. 
 

If, moreover, the d.f. F has a density f, we can also introduce the concept of 
conditional density for functions ,   and XX Y Y XF F F , giving at the same time an 
intuitive interpretation of conditioning in this special case. 
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We know that for every fixed (x,y): 

 ( , ) ( , , , ) ( , ),f x y x y x y x y P x X x x y Y y y  (10.162) 

where ( , , , ) 0x y x y  for ( , ) (0,0)x y , and similarly for the marginal 
density function of X: 

 ( ) ( , ) ( ),Xf x x x x P x X x x  (10.163) 

where ( , ) 0x x  for 0x  with of course: 

 ( ) ( , )X

R

f x f x y dy . (10.164) 

Using formula (10.122), we thus obtain: 

 
( , ) ( , , , )

( ) ( , )X

f x y x y x y x y
P y Y y y x X x x

f x x x x
.(10.165) 

Letting x  tend to 0, we obtain: 

 
0

( , )
lim

( )x
X

f x y
P y Y y y x X x x y

f x
. (10.166) 

This relation shows that the function Y Xf  defined by: 

 
( , )

( )Y X
X

f x y
f y x

f x
 (10.167) 

is the conditional density of Y, given X. Similarly, the conditional density of X, given 
Y is given by: 

 
( , )

( )X Y
Y

f x y
f x y

f y
. (10.168) 
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Consequently, for any Borel subsets A and B of , we have: 

 

1
( ) ( , ) ,

( )

(( , ) ) ( , ) ( ) .

X Y
YA A

YX Y
A B B A

P X A Y y f x y dx f x y dx
f y

P X Y A B f x y dxdy f x y dx f y dy

 (10.169) 

The last equalities show that the density of (X,Y) can also be characterized by 
one marginal d.f. and the associated conditional density, as from relations (10.166) 
and (10.169): 

 X YY X X Yf f f f f . (10.170) 

It is possible that conditional means exist; if so, they are given by the following 
relations: 

 ,  E X Y y f x y dx E Y X x f y x dy . (10.171) 

The conditional mean of X (respectively Y) given Y=y (respectively X=x) can be 
seen as a function of the real variable y (respectively x) called the regression curve 
of X (respectively Y) given Y (respectively X). 

 
The two regression curves will generally not coincide and not be straight lines 

except if the two r.vs. X and Y are independent because, in this case, we obtain from 
relations (10.166) and (10.168) that: 

 ,  X YX Y Y Xf f f f  (10.172) 

and so: 

 ( ), ( )E X Y E X E Y X E Y , (10.173) 

proving that the two regression curves are straight lines parallel to the axes passing 
through the “center of gravity” (E(X), E(Y)) of the probability mass in 2 . 
 

In the special case of a non-degenerated normal distribution for (X,Y) with vector 
mean (m1,m2) and variance covariance matrix: 



446     Mathematical Finance 

 
2
1 12

2
21 2

, (10.174) 

it can be shown that the two conditional distributions are also normal with 
parameters: 

 

2 22
2 2 1 2

1

2 21
2 1 2 2

2

( ), (1 ) ,

1
( ), (1 ) .

Y X N x

X Y N y

 (10.175) 

Thus, the two regression curves are linear. 

10.7. Stochastic processes 

In this section, we shall always consider a complete probability space , ,  
with a filtration F. 

 
Let us recall that a probability space , ,  is complete if every subset of an 

event of probability 0 is measurable, i.e. in the -algebra , and so also of 
probability 0. 

 
Definition 10.12 F is a filtration on the considered basic probability space if F is a 
family of ,t t T  of sub- -algebras of , the index set T being either the 
natural set 0,1,..., ,...n  or the positive half real line 0,  such that: 

 

0      0.

(i) ,

(ii) ,

(iii)  

s t

t u
u t

contains all subsets with probability

s t
 (10.176) 

Assumption (ii) is called the right continuity property of filtration F. 
 
Any filtration satisfying these three assumptions is called a filtration satisfying 

the usual assumptions. 
 
The concept of filtration can be interpreted as a family of amounts of information 

so that t  gives all the observable events at time t. 
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Definition 10.13 The quadruplet  , , , ,t t T  is called a filtered 
probability space. 

Definition 10.14 A r.v. : T  is a stopping time if: 

 :  : ( ) .tt T t  (10.177) 

The interpretation is the following: the available information at time t allows for 
the possibility to observe the event given in (10.177) and to decide for example if 
the future observations will be stopped after time t, or not. 

 
We have the following proposition: 

Proposition 10.4 The r.v.  is a stopping time if and only if 

 : ( ) ,  .tt t T  (10.178) 

Definition 10.5 A stochastic process (or simply process) with values in the 
measurable space ,E  is a family of r.vs.: 

 ,tX t T  (10.179) 

where for all t: 

 -measurable.: ,  ,tX E  

This means, in particular, that for every subset B of the -algebra , the set  

 1 : ( )t tX B X B  (10.180) 

belongs to the -algebra .  
 
Remark 10.6 If , ,E , the process is called a real stochastic process 
with values in ; if , ,n nE , it is called a real multidimensional 
process with values in n . 
 

If T is the natural set 0,1,..., ,...n , the process X is called a discrete time 
stochastic process or a random sequence; if T is the positive half of the real line 
0, , the process X is called a continuous time stochastic process.  
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Definition 10.16 The stochastic process x is adapted to the filtration f if, for all t, the 
r.v. X t  is t -measurable. This means that, for all t T : 

 1 : ( ) , .t t tX B X B B  (10.181) 

Definition 10.17 Two processes x and y are indistinguishable if a.s., for all t T : 

 .t tX Y  (10.182) 

This means that: 

 , 1.t tX Y t T  (10.183) 

Definition 10.18 The process X (or Y) is a modification of the process Y (or X) if 
a.s., for all t T : 

 ,t tX Y  a.s. (10.184) 

This means that: 

 ., 1t tX Y t T  (10.185) 

for all t T . 

Definition 10.19 For every stochastic process x, the function from t to e, 

 ( )tt X  (10.186) 

defined for each , is called a trajectory or sample path of the process. 
 

It must be clearly understood that the “modern” study of stochastic processes is 
concerned with the study of the properties of these trajectories. 

 
For example, we can affirm that if two processes X and Y are indistinguishable, 

then there exists a set N belonging to  of probability 0 such that: 

 : ( ) ( ), .t tN X Y t T  (10.187) 

In other words, for each  element of the set ,N  the two functions 
( ) and ( )t tt X t Y  are equal. 
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As the basic probability space is complete, the neglected set N belongs to t , for 
all t T . 

 
Definition 10.20 A real stochastic process x is càdlàg if a.s. the trajectories of x are 
right continuous and have left limits at every point t.  
 
Definition 10.21 If x is a real stochastic process and a set , then the r.v. 
defined by: 

 ( ) inf 0 : ( )tT t X  (10.188) 

is called the hitting time of  by process X. 
 

It is easily shown that the properties of stopping and hitting times are as follows 
(see Protter (1990)): 

(i) if X is càdlàg, adapted and , then the hitting time related to  is a 
stopping time; 

(ii) if S and T are two stopping times, then the following r.v.: 

 min , , max , , , ( 1)S T S T S T S T S T S  (10.189) 

are also stopping times. 
 
Definition 10.22 If T is a stopping time, the -algebra T  defined by: 

 : : ( ) , 0T tT t t  (10.190) 

is called the stopping time -algebra. 
 

In fact, the -algebra T  represents the information of all observable sets up to 
stopping time T. We can also say that T  is the smallest stopping time containing 
all the events related to the r.v. ( ) ( )TX  for all the adapted càdlàg processes X or 
generated by these r.v. 
 

We also have for two stopping times S and T: 

(i) a.s. ,S TS T  (10.191) 

(ii) , .S T S T  (10.192) 
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10.8. Martingales 

In this section, we shall briefly present some topics related to the most well-
known category of stochastic processes called martingales. 

 
Let X be a real stochastic process defined on the filtered complete probability 

space , , , ,tP t T . 
 
Definition 10.23 The process x is called a ( )t -martingale if: 

(i) 0, ,tt E X  (10.193) 

(ii) | ,a.s.t s ss t E X X  (10.194) 

 
The latter equality is called the martingale property or the martingale equality. 

 
Definition 10.24 The process X is called a super-martingale (respectively sub-
martingale) if: 

(i) 0, ,tt E X  (10.195) 

(ii) | ( ) ,a.s.t s ss t E X X  (10.196) 

 
The martingale concept is interesting; indeed, as the best estimator at time s (s>t) 

for the value of tX , as given by the conditional expectation appearing in relation 
(8.2), the martingale equality means that the best predicted value is simply the 
observed value of the process at the time of predicting s. 
 

In finance the martingale is frequently used (see Janssen and Skiadas (1995)) to 
model the concept of an efficient financial market. 
 
Definition 10.25 The martingale X is closed if: 

 

  :

(i) ,

(ii) 0, : ,a.s..t t

Y

Y

t Y X

 (10.197) 

It is possible to prove the following result (see for example Protter (1990)). 
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Proposition 10.5  

(i) If X is a supermartingale, then the function tt E X  is right continuous if 
and only if there exists a unique modification Y of X such that Y is càdlàg. 

(ii) If X is a martingale then, up to a modification, the function tt E X  is 
right continuous. 
 

It follows that every martingale, such that the function tt E X  is right 
continuous, is càdlàg. 

 
The two most important results about martingales are the martingale 

convergence theorem and the optional sampling (or Doob’s) theorem. 
 
Before giving these results, we still need a final technical definition. 

 
Definition 10.25 (Meyer (1966)) A family ,u Au  where A is an infinite index 
set is uniformly integrable if: 

 
: ( )

limsup ( ) ( ) 0
n

n

d .  (10.198) 

Proposition 10.6 Let x be a super-martingale in such a way that the function 

tt E X  is right continuous such that: 

 
0,

sup t
t

E X ; (10.199) 

then, there exists a r.v. Y such that: 

 
(i) ,

(ii) lim , a.s.
tt

E Y

Y X
 (10.200) 

Moreover, if X is a martingale closed by r.v. Z, then r.v. Y also closes X and: 

 ,Y E Z  (10.201) 

where  
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0

.t
t

 (10.202) 

With the aid of the concept of uniform integrability, we can obtain the following 
corollary. 
 
Corollary 10.1 

(i) Let X be a right continuous martingale and uniformly integrable; then the 
following limit: 

 lim t
t

Y X  (10.203) 

exists a.s.; moreover 1Y L and the r.v. Y closes the martingale X. 

(ii) Let X be a right continuous martingale; then ( , 0)tX X t  is uniformly 
integrable if and only if 

 lim t
t

Y X  (10.204) 

exists a.s., 1Y L , and , 0,tX t  is a martingale with, a.s.: 

 .X Y  (10.205) 

Now, an interesting question is: what happens if we observe a martingale X at 
two stopping times S,T (S<T, a.s.)? The solution is given by the optional sampling 
theorem, also called Doob’s theorem. 
 
Proposition 10.7 (The optional sampling theorem or Doob’s theorem) Let X be a 
right continuous martingale closed by X  and let S and T be two stopping times so 
that a.s. S < T; then the r.v. 1,S TX X L  and: 

 ,  a.s.S T SX E X  (10.206) 

This important theorem means that if we restrict the random observation time set 
to S ,T , then the restriction of the martingale to this set is still a martingale 
provided that S and T are two stopping times with of course S<T, a.s. 

 
This result is interesting for the concept of stopped process. 
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Definition 10.26 Let X be a stochastic process and T a stopping time. The stopped 
stochastic process TX  is defined by: 

 , 0,T T
tX X t  (10.207) 

where: 

 
( ) ( ),

inf , .

T
t t TX X

with t T t T
 (10.208) 

From this definition, it follows that if process X is adapted and càdlàg, then so is 
the stopped process TX . This is due to the fact that t T  is also a stopping time 
and moreover: 

 
1 1 .T

t t Tt T t TX X X  (10.209) 

This leads to the last result we want to mention. 
 
Proposition 10.8 Let x be a right continuous uniformly integrable martingale; then 

the stopped process , 0,T
t TX X t  has the same properties with respect 

to the filtration , 0, .t t  

10.9. Brownian motion 

There are many types of stochastic process and some of them will be extensively 
studied in the following chapters, such as renewal processes, random walks, Markov 
chains, semi-Markov and Markov processes and their main extensions. 

 
Figure 10.1 shows a typical sample path for models in finance. 
 
To obtain such trajectories, it is necessary to introduce a specific stochastic 

process called the Brownian motion. 
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Figure 10.1. Sample of a Brownian motion 

We will work on a basic complete filtered probability space satisfying the usual 

assumptions and noted , , , , 0, .tP t  

 
Definition 10.27 The real stochastic process , 0,tB B t  will be called a 
Brownian motion or Brownian or Wiener process with trend  and variance 2  
provided that: 

(i) B is adapted to the basic filtration, 

(ii) B has independent increments, i.e. that: 

 

,  (0 ) :  ,

  ,

t s S t ss t s t P B B A P B B A

Borel set B
 (10.210) 

(iii) B has stationary increments, i.e.: 

 
2

,  (0 ) :      

 ( ( - ), ( - )),

t ss t s t B B has a normal distribution

N t s t s  (10.211) 

(iv)  0 1,  ( ).P B x x  (10.212) 

 
If, moreover, we have: 

 
20,  1,  0,x  (10.213) 
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then the Brownian motion is said to be standard. 
 

Let us now give the most important properties of the standard Brownian motion. 
 
Property 10.2 If B is a Brownian motion, then there exists a modification of B, the 
process B*, such that B* has, a.s., continuous trajectories. 
 
Property10.3 If B is a standard Brownian motion, then B is a martingale. 
 
Property 10.4 If B is a standard Brownian motion, then the process Q where 

 
2 , 0,tQ B t t  (10.214) 

is a martingale. 
 
Remark 10.8 It can also be proved that both Properties 10.3 and 10.4 characterize a 
standard Brownian motion. 
 
Property 10.5 If B is a standard Brownian motion, then for almost all , the 
trajectory ( )tB  is not of bounded variation on every closed interval , .a b  
 

This explains why it is necessary for models in finance and in insurance to define 
a new type of integral, called the Itô or stochastic integral, if we want to integrate 
with respect to B (see for example Protter (1990)). This will be done in section 13.3. 


